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A difficulty in the theory of a thin elastic interface
is that series expansions in its thickness become
disordered in the high-contrast limit, i.e. when the
interface is much softer or much stiffer than the
media on either side. We provide a mathematical
analysis of such series for an annular coating around
a cylindrical fibre embedded in an elastic matrix
subject to biaxial forcing. We determine the order
of magnitude of successive terms in the series, and
hence the terms that need to be retained in order to
ensure that every neglected term is smaller in order
of magnitude than at least one retained term. In this
way, we obtain uniform approximations for quantities
such as the jump in the displacement and stress across
the coating, and explain some peculiarities that have
been observed in numerical work. A key finding
is that it is essential to distinguish three types of
boundary-value problem, corresponding to ‘distant
forcing’, ‘localized forcing’ and ‘the homogeneous
problem’, since they give different patterns of
disorder in the corresponding series expansions.
This provides a meaningful correspondence between
physical principles and our mathematical results.

1. Introduction
A widely used method in the theory of a thin elastic
interface is that of effective boundary conditions. The
idea is that within an elastic layer one may place an
imaginary hypothetical surface and determine boundary

2023 The Author(s) Published by the Royal Society. All rights reserved.
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conditions at this surface to reproduce as closely as possible the fields outside the layer.
The surface may be anywhere in the layer, e.g. at its centre or coincident with one of its
boundaries, and the fields in the adjacent media are envisaged as being extended by analytic
continuation up to the hypothetical surface, so that the original three-phase problem is replaced
by a simpler two-phase problem. A variant is not to introduce a hypothetical surface at all, but
simply to determine jump conditions across the layer, and then work only with the surrounding
media and the jump in displacement and traction between them. This likewise gives a two-phase
problem. A basic ingredient of either approach is the construction of series expansions in the
thickness of the layer, truncated appropriately for the geometry and parameter regime of interest.

The method has a long history and an extensive literature. Some early papers are [1] on
thin-film planar layers for the guiding of surface waves, and [2,3] on spherical and cylindrical
annular layers in the theory of composites. Series expansions have been obtained for spheroidal
inclusions [4], layers of general shape [5–7] and anisotropic planar layers [8–10]. An asymptotic
approach that includes variable curvature and rational scalings for soft or stiff layers is given
in [11]; the relation to the theory of a Steigmann–Ogden interface is given in [12] and surface
operators are constructed in [13]. An early treatment related to a Galerkin boundary integral
method is presented in [14]. Recent analytical and numerical results for a coated circular
inhomogeneity are in [15–17], and for a coated spherical inhomogeneity in [18]. As an indication
of the enormous scope of the underlying physical problem we are addressing, we may cite the
comprehensive review paper [19], with over 700 references, and also mention physical effects
such as thermoelasticity [20] and the adhesion properties of joints and interphases (e.g. [21,22])
as representative of another enormous literature. The subject spans mathematics, physics and
engineering to a high degree.

The aim of the present paper is to resolve a difficulty encountered directly in [17] (but also
known about from much earlier, e.g. [7,21]). This is the loss of accuracy of layer models in certain
parameter regimes, which is found empirically to be strongly associated with a highly irregular
dependence of truncation error on the number of terms retained in an expansion. Our approach
in this paper is to determine the analytic structure of the exact solution of a carefully chosen
canonical problem when the solution is expressed as a series expansion in the dimensionless
thickness ε of the thin layer, with coefficients that depend on the stiffnesses of the different
phases and their Poisson’s ratios. The problem we have chosen is that of a coated cylindrical
fibre perfectly bonded to a matrix under biaxial forcing. Thus the material parameters are the
shear moduli (μf, μc, μm) together with Poisson’s ratios (νf, νc, νm), and all field variables are
proportional to cos 2θ or sin 2θ , where θ is the angular variable in cylindrical coordinates. Here
and throughout, subscripts or superscripts (f, c, m) denote (fibre, coat, matrix). We have found
that this apparently simple and well-explored problem displays a quite remarkably complex and
irregular behaviour when analysed from the point of view of what can go wrong in a truncated
Taylor series expansion in the layer thickness. As problems can arise unexpectedly in late terms,
after a sequence of tame early terms, it is necessary to present a large number of series in some
detail, and we have done this. These details are needed if a sound judgement is to be formed of
what is likely to occur in more complicated problems.

The two decisive quantities for our purposes are the softness parameter α and the stiffness
parameter β, both dimensionless, defined by

α = μc

min(μf, μm)
and β = μc

max(μf, μm)
. (1.1)

We shall refer to a coat as soft if α � 1, i.e. if it is much softer than the surrounding fibre and
matrix; similarly we refer to it as stiff if β � 1, i.e. much stiffer than its surrounding media. These
parameters make it easy to state the mathematical idea underlying the paper. Let us suppose
that for a soft coat we encounter a series expansion in which the terms have successive orders of
magnitude

(O(αn0 ), O(αn1ε), O(αn2ε2), . . .), (1.2)
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where (n0, n1, n2, . . .) is a sequence of integers (with no restriction on their sign). Then if for a
particular k ≥ 1 it should happen that nk < nk−1, the series is disordered at position k, because if α

is small enough at fixed ε, then αnkεk � αnk−1εk−1. The degree of smallness for this to happen is
easily quantified as α � ε1/(nk−1−nk). This occurs for many series, and moreover can occur for more
than one k in a given series. Similarly, for a stiff coat a series expansion of the form

(O(βn0 ), O(βn1ε), O(βn2ε2), . . .), (1.3)

is disordered at any position k for which nk > nk−1, because then βnkεk � βnk−1εk−1 if β is large enough.
Quantitatively, this occurs when β � 1/ε1/(nk−nk−1).

Thus to obtain a uniform approximation to either of the two types of series, one must go at least
as far as the latest disordered term. If the disorder continues indefinitely, because the sequence
(n0, n1, n2, . . .) has no minimum in the first case, or no maximum in the second case, then a uniform
approximation in the form of a truncated series does not exist. Of course, a series may not be
disordered anywhere; it is then well-ordered, but perhaps surprisingly there appear to be few
well-ordered series in the theory of elastic interfaces, or more generally in the theory of multi-
phase media. We believe, therefore, that the type of analysis presented in this paper, with its
sharp focus on exactly quantified orders of magnitude, is of wide generality.

One might ask whether it is possible to say in advance what the powers (n0, n1, n2, . . .) will
be for the quantities of interest in an interface problem, most notably the displacements and
stresses in or near the interface itself. We have found that this is not possible. The powers
vary unpredictably (as noted, a late disordered term may unexpectedly appear, and often does).
Moreover, in calculating the jump between two accurately calculated quantities, a sequence of
consecutive early terms in the two series may cancel, including among them disordered terms,
so that the disorder in a jump is usually different from that in the quantities used in defining the
jump, again unpredictably. Thus the fact that a disordered term may cancel out at a later stage in
a calculation needs to be constantly borne in mind.

For the above reasons, we have thought it worthwhile to revisit the classical problem
referred to above, of a coated fibre under uniform load. We calculate series expansions of the
important physical quantities and jumps, and determine their degree of disorder, i.e. the powers
(n0, n1, n2, . . .) in the high-contrast limits α � 1 and β � 1. Thereby we construct ‘minimal uniform
approximations’, containing the necessary powers of ε but no more. For any other form of
approximation, e.g. up to a lower power of ε, our method determines where in parameter space it
is expected to be accurate, and where it will fail. Our approximations determine which terms are
needed in effective boundary conditions for them to be uniform in the high-contrast limit. These
approximations are consistent with the asymptotic theory in [11], which we thus confirm. In §9,
we give illustrative examples of the theory. The reader may find it helpful to look ahead to this
section on occasion, to see examples of some uniform approximations in which the coefficients,
including numerical values, are given explicitly.

Physically, the origin of the disorder is that a thin elastic layer may deform by both stretching
and bending, the former described by low powers of ε, the latter by high powers of ε. Thus
a deformation dominated by bending requires high powers of ε to be retained, whereas these
powers are negligible when stretching is dominant [11]. The present paper provides a complete
mathematical analysis of these cases in a canonical problem.

All our formulae are exact, given the starting-point of linear elasticity. We use Mathematica to
calculate series expansions analytically, without approximation. The code and its output are in
the electronic supplementary material.

2. Boundary-value problems for a coated fibre in a matrix

(a) Geometry and boundary conditions
The fibre problem in §1 reduces to one of plane-strain elasticity. We take a cross-section of the fibre
to be a disc of radius a, shear modulus μf and Poisson’s ratio νf, occupying the region 0 ≤ r < a
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in a cylindrical coordinate system (r, θ ). The fibre has an annular coat with parameters (μc, νc)
occupying a < r < b, and this is perfectly bonded to a matrix with parameters (μm, νm) occupying
r > b. Thus the fibre–coat interface is at r = a and the coat–matrix interface is at r = b. For a thin
coat, we define its dimensionless thickness ε and mean radius a0 by

ε = b − a
a0

and a0 = a + b
2

, (2.1)

so that

a = a0

(
1 − ε

2

)
and b = a0

(
1 + ε

2

)
(ε � 1). (2.2)

In formulae, it is somewhat easier to use instead of the Poisson’s ratios themselves, the Kolosov
constants [23, p. 43] defined by

(κf, κc, κm) = (3 − 4νf, 3 − 4νc, 3 − 4νm). (2.3)

The displacement and stress components are (̂ur, ûθ , σ̂rr, σ̂rθ ), representing real functions of r and
θ (we shall not need σ̂θθ ). For biaxial forcing, we write these in the form

(̂ur, ûθ , σ̂rr, σ̂rθ ) = Re{(ur, iuθ , σrr, iσrθ )e2iθ }, (2.4)

where (ur, uθ , σrr, σrθ ) ≡ (ur(r), uθ (r), σrr(r), σrθ (r)) are real functions of r; the argument r is omitted
where this is clear. For convenience, we call these functions of r the displacement and stress
components, leaving understood a factor of cos 2θ or sin 2θ determined by (2.4). Phases will be
indicated by superscripts (f, c, m) and interfaces by subscripts (a, b), so that, for example, the value
of the radial displacement uf

r(r) at the interface r = a is denoted uf
ra, this being a shorthand for uf

r(a).
We define a state vector u ≡ u(r) = (ur, uθ , σrr, σrθ )T, and indicate phases and interfaces by, for

example,
uf ≡ uf(r) = (uf

r, uf
θ , σ f

rr, σ f
rθ )T and uf

a ≡ uf(a) = (uf
ra, uf

θa, σ f
rra, σ f

rθa)T, (2.5)

and so on correspondingly. In this way, all the required properties throughout a phase or at an
interface can be represented by a single vector symbol. It is convenient to use both a and b as
reference lengths, and to define dimensionless state vectors by

ṽf
a ≡ ṽf

a(r) =
(

2uf
r(r)
a

,
2uf

θ (r)
a

,
σ f

rr(r)
2μf

,
σ f

rθ (r)
2μf

)T

, (2.6)

and similarly for ṽc
a, ṽc

b and ṽm
b , in which the subscripts denote the reference length used in the

first two components. Thus in the coat we may use either ṽc
a or ṽc

b, depending on which reference
length gives simpler formulae. The reason for the tildes here is that the ṽ quantities are mostly
needed at the values r = a or r = b, and the corresponding values (ṽf

a(a), ṽc
a(a), ṽc

b(b), ṽm
b (b)) are

written without tildes in the compact form

(vf
a, vc

a, vc
b, vm

b ) ≡ (ṽf
a(a), ṽc

a(a), ṽc
b(b), ṽm

b (b)). (2.7)

The boundary conditions are (i) continuity of displacement and traction at interfaces, i.e. uf
a =

uc
a and uc

b = um
b ; (ii) continuity of displacement at the origin, i.e. (uf

r, uf
θ ) → (0, 0) as r → 0; (iii)

bounded stress at infinity; and (iv) a forcing (or loading) condition. Here (i)–(iii) are homogeneous
boundary conditions and (iv) is an inhomogeneous boundary condition. As we see below, (iii)
and (iv) involve only scalar expressions, thus making the number of boundary conditions 12
in total.

In the interests of a unified treatment of different problems, we make use of the notion of a
forcing parameter F in all cases. One option is to leave F unspecified and arbitrary, so that F is
simply a multiplying factor for each field variable, because the problem is linear. We shall call
this the homogeneous problem, and refer to it as problem (a). Alternatively, the forcing may be
specified precisely, in which case we need to say whether the forcing is ‘distant’, i.e. applied at
infinity, or is ‘localized’, i.e. applied to the fibre and/or coating. These options give rise to the
distant-forcing problem and the localized forcing problem, respectively, and we refer to them
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as problems (b) and (c). It is then necessary to determine F in relation to the given data of the
problem. Our approach does this in a straightforward way, and in general F is a function of ε,
which depends on the boundary-value problem being solved.

In this paper, we concentrate on problems (a) and (b), and in case (b) specify the distant forcing
by

(̂σrr, σ̂rθ ) → (σ∞ cos 2θ , −σ∞ sin 2θ ) (r → ∞), (2.8)

or equivalently
(σm

rr , σm
rθ ) → (σ∞, σ∞) (r → ∞), (2.9)

(see (2.4) for the notation), where σ∞ is a prescribed constant. This forcing corresponds to uniform
far-field strain. Note that it is the choice of F which ensures that σ∞ in (2.8) and (2.9) is a constant
independent of ε. For problem (c), localized forcing, the required choice of F is different, as is
shown in §4a by an example in which the prescribed constant is the value of σrr at r = b. This may
be interpreted as a prescribed loading along the outer boundary of the coat.

The literature contains examples of all three problems (a), (b) and (c). [11] is largely concerned
with (a), but includes (c) in the final discussion; [15–17] are concerned with case (b).

(b) Form of solution
The boundary-value problems just specified have a known solution, given implicitly by inversion
of an 8 × 8 matrix [3], or explicitly by evaluation of the Kolosov–Muskhelishvili potentials [14–17].
Its functional form is that of Michell’s solution [23, p. 118] in each phase, conveniently expressed
in terms of matrices defined by

M̃f
a = M̃(a, κf, r) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
( a

r

)3 −2r
a

(κf + 1)a/r (κf − 3)(r/a)3

−2
( a

r

)3 −2r
a

(κf − 1)a/r −(κf + 3)
( r

a

)3

−3
( a

r

)4
−1 −2

( a
r

)2
0

3
( a

r

)4
−1

( a
r

)2
−3

( r
a

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.10)

in the fibre, and similarly for M̃c
a, M̃c

b and M̃m
b in the coat and matrix. We maintain our convention

that a tilde indicates a function of r. The two different forms M̃c
a and M̃c

b for Michell’s solution in
the coat correspond to the use of r/a and r/b, respectively, as the non-dimensional version of the
radial variable r.

The dimensionless field in the fibre is ṽf
a = M̃f

aaf, with ṽf
a ≡ ṽf

a(r) as defined in (2.6) and

af ≡ (af
1, af

2, af
3, af

4)T, (2.11)

a vector of dimensionless coefficients. These coefficients, and any other quantity we describe as a
coefficient, does not depend on r. Here af

1 = 0 and af
3 = 0, corresponding to the absence of terms

in ((a/r)3, a/r) in both uf
r and uf

θ , as required by continuity of displacement at the origin.
In the coat we may write either ṽc

a = M̃c
aac or ṽc

b = M̃c
bbc, depending on which dimensionless

variable ṽc
a ≡ ṽc

a(r) or ṽc
b ≡ ṽc

b(r) is used. Here the coefficient vectors are

ac = (ac
1, ac

2, ac
3, ac

4)T and bc = (bc
1, bc

2, bc
3, bc

4)T. (2.12)

These are dimensionless, and a check of definitions shows that bc = Dac where

D = diag

(( a
b

)4
, 1,

( a
b

)2
,
(

b
a

)2
)

. (2.13)

In the matrix phase, we have ṽm
b = M̃m

b bm, with ṽm
b ≡ ṽm

b (r), and the vector of dimensionless
coefficients is now

bm = (bm
1 , bm

2 , bm
3 , bm

4 )T. (2.14)
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Here bm
4 = 0, which corresponds to the absence of a term in (r/b)2 in σm

rθ , as required by bounded
stress at infinity.

(c) The Michell matrix
We define the Michell matrix by

M = M(κ) =

⎛⎜⎜⎜⎝
2 −2 κ + 1 κ − 3

−2 −2 κ − 1 −(κ + 3)
−3 −1 −2 0
3 −1 1 −3

⎞⎟⎟⎟⎠ . (2.15)

This is a function of an arbitrary Kolosov constant κ , but of no other quantity, and we denote its
values in the fibre, coat and matrix by

(Mf, Mc, Mm) = (M(κf), M(κc), M(κm)). (2.16)

Thus at r = a in the fibre, the relation ṽf
a = M̃f

aaf given after (2.10) may be written as vf
a = Mfaf,

where vf
a is the first vector defined in (2.7). At r = a on the coat side, the corresponding relation is

vc
a = Mcac. Likewise, we have the two relations vc

b = Mcbc and vm
b = Mmbm, corresponding to the

two sides of r = b. Here the vectors vc
a, vc

b and vm
b are the last three quantities in (2.7).

The Michell matrix has a non-trivial property that simplifies the subsequent algebra. This is
that although det(M) = −12(κ + 1)2, nevertheless a factor κ + 1 is common to every term in the
adjugate of M, and so cancels out everywhere in the inverse of M, to leave

M−1 = 1
6(κ + 1)

⎛⎜⎜⎜⎝
0 −3 −(κ − 3) κ + 3

−6 3 −3(κ + 1) −3(κ − 1)
3 3 −6 −6
3 −3 2 −2

⎞⎟⎟⎟⎠ . (2.17)

Thus although one might have expected the displayed terms in (2.17) to be quadratic expressions
in κ , they are in fact only linear. The underlying reason for this is that M is only of rank 2 when
κ = −1.

With the aid of (2.17), the coefficient vectors (af, ac, bc, bm) are expressible in terms of the
dimensionless boundary values (vf

a, vc
a, vc

b, vm
b ) through the relations af = M−1

f vf
a, etc. Note that

the interface conditions uf
a = uc

a and uc
b = um

b given in §2a are for dimensional quantities. To find
their dimensionless versions, we use the relations

(uf
a, uc

a, uc
b, um

b ) = (Df
avf

a, Dc
avc

a, Dc
bvc

b, Dm
b vm

b ), (2.18)

involving four diagonal matrices defined by, for example,

Df
a = diag

( a
2

,
a
2

, 2μf, 2μf

)
, (2.19)

and so on. Then the interface conditions become

vf
a = Dc

f vc
a and vc

b = Dm
c vm

b , (2.20)

or equivalently

vc
a = Df

cvf
a and vm

b = Dc
mvc

b, (2.21)

involving a second family of four diagonal matrices defined according to the pattern

Dc
f = diag

(
1, 1,

μc

μf
,

μc

μf

)
, (2.22)

and so on. Matrices of the form (2.19) are defined with respect to a phase and a boundary, whereas
those of the form (2.22) are defined with respect to two phases.
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3. Method of solution
With the above definitions and relations, we have available a method of solution of the boundary-
value problems defined in §2a. The method involves two ideas. The first is that given any one of
the 12 four-vectors we have defined, i.e. any coefficient vector selected from (af, ac, bc, bm), or
any boundary vector selected from either (uf

a, uc
a, uc

b, um
b ) or (vf

a, vc
a, vc

b, vm
b ), the value of any other

quantity may be written down as a product of this vector by a sequence of matrices with known
entries. These matrices are those we have defined, and is the reason we have given prominence
to the Michell matrix and its inverse. The problem thus resolves itself into finding a single four-
vector, and this may be any one of the 12 available. The second idea is that of ‘propagation of
linear relations’, which now follows.

(a) Propagation of linear relations
Let us suppose that we are given or have calculated a linear relation between the components of
any of the vectors above. For example, if this vector is bm, a linear relation between its components
is of the form �Tbm = 0 where � = (l1, l2, l3, l4)T specifies the relation, and is taken as given. Since
bm = M−1

m vm
b , we may write (�TM−1

m )vm
b = 0, which is a linear relation between the components of

vm
b ; then vm

b = Dc
mvc

b gives (�TM−1
m Dc

m)vc
b = 0, a linear relation between the components of vc

b, and
proceeding in this way we obtain also

(�TM−1
m Dc

mMc)bc = 0 and (�TM−1
m Dc

mMcD)ac = 0. (3.1)

Further applications give a similar but longer expression in af. Thus the original linear relation
between the components of bm (which relates to the matrix phase) has propagated first to the
coat, in the form of a relation between the components of bc or ac, and then to the fibre, as a
relation between the components of af. Similarly, whichever vector one starts with, in any phase,
an arbitrary linear relation between its components may be propagated anywhere by means of a
product of the matrices defined in §2.

(b) Effect of remote boundary conditions
The boundary conditions as r → 0 and r → ∞ are ‘remote’, in that they apply at a distance from
the coat. These boundary conditions, given in §2a, are equivalent to (af

1, af
3) = (0, 0) and bm

4 = 0,
as required to remove terms of order ((a/r)3, a/r) in the displacement near the origin, and terms
of order (r/b)2 in the distant stress. Thus the remote boundary conditions are equivalent to three
linear relations, which may be written

(�(1)Taf, �(3)Taf, �(4)Tbm) = (0, 0, 0), (3.2)

where
�(1) = (1, 0, 0, 0)T, �(3) = (0, 0, 1, 0)T, �(4) = (0, 0, 0, 1)T. (3.3)

Let us now propagate these relations to the coat. For definiteness, we propagate to ac, though
an alternative would be to propagate to bc, which differs only in being based on the reference
length b instead of a, and satisfies bc = Dac with D as defined in (2.13). Thus we obtain three
linear relations satisfied by the components of ac, of the form

(n(1)Tac, n(3)Tac, n(4)Tac) = (0, 0, 0), (3.4)

in which, apart from arbitrary constants of proportionality, (n(1), n(3), n(4)) are products of matrices
defined in §2. For example, we have in effect calculated n(4) in (3.1)2, since � = �(4) gives

n(4) ∝ (�(4)TM−1
m Dc

mMcD)T. (3.5)

The expressions for (n(1), n(3)) are similar, but involve matrices defined in the fibre rather than the
matrix.
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Geometrically, the above shows that ac is perpendicular to three vectors in four-space, namely
(n(1), n(3), n(4)). These vectors are linearly independent, because the boundary conditions are
independent, and so ac is perpendicular to the hyperplane they generate. Hence ac is proportional
to the cross-product of (n(1), n(3), n(4)), and we may write

ac = Fn(1) × n(3) × n(4), (3.6)

which is non-zero. Here F is the forcing (or loading) parameter, as discussed in §2a. For the
homogeneous problem (a), as there defined, F is arbitrary, whereas for a distant or localized
forcing problem it is determined by the remaining boundary condition. We take (n(1), n(3), n(4))
to be non-dimensional by suitable choice of constants of proportionality, so that F also is non-
dimensional. Other choices are possible, so long as the product of the terms on the right-hand
side of (3.6) is dimensionless; but the advantage of using non-dimensional forms of F and
(n(1), n(3), n(4)) is that the dimensional correctness of all subsequent formulae can be verified at
sight. This is a considerable aid to making the physical meaning of formulae transparent. In fact,
one can surmise already that the final form of F must be a dimensionless multiple of σ∞/μm, and
this turns out to be the case, as we find in §4a.

Thus the solution of the problem is reduced to evaluation of a triple product in four-space. The
reason ac gives the full solution is that we may ‘propagate back’ from ac to any other quantity, in
any phase, on multiplying ac by a sequence of known small matrices. The quantities obtained are
coefficient vectors (af, ac, bc, bm), boundary vectors (uf

a, uc
a, uc

b, um
b ) and (vf

a, vc
a, vc

b, vm
b ), and field

vectors (uf, uc, um) and (ṽf
a, ṽc

a, ṽc
b, ṽm

b ). The field vectors are functions of r (the dependence on
θ is implicit, but may be recovered using (2.4)), and quantities containing the symbol v or ṽ
are dimensionless. Identities in the above are uf

a = uc
a and uc

b = um
b , by the interface boundary

conditions. The parameters appearing in the solution are the shear moduli (μf, μc, μm), the
Poisson’s ratios (νf, νc, νm) defined via the Kolosov constants (κf, κc, κm), and the interface radii
(a, b).

4. Calculation of the coefficient vectors
In §3b, we showed how to determine linearly independent vectors n(1), n(3) and n(4) which are
perpendicular to the coefficient vector ac. A suitable choice is

n(1) = 1
μm

⎛⎜⎜⎜⎝
2(μf + κfμc)
2(μf − μc)

−(κc − 1)μf + (κf − 1)μc

−(κc + 3)μf − (κf + 3)μc

⎞⎟⎟⎟⎠ , n(3) = 1
μm

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0

−(μf − μc)

κcμf + μc

2

−3(μf − μc)/2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(4.1)

and

n(4) = 1

a8
0 μm

⎛⎜⎜⎜⎝
2(μc − μm)a6b2

0
(μc − μm)a4b4

−(μc + κcμm)b8

⎞⎟⎟⎟⎠ . (4.2)

Then with ac as in (3.6), the other coefficient vectors are given by the propagation formulae of §3.
The result takes the form

af = F(a6b2af
62 + a4b4af

44 + b8af
08)/(a8

0 μ3
m), (4.3)

ac = F(a6b2ac
62 + a4b4ac

44 + b8ac
08)/(a8

0 μ3
m), (4.4)

bc = F(a8bc
80 + a6b2bc

62 + a4b4bc
44 + a2b6bc

26 + b8bc
08)/(a8

0 μ3
m) (4.5)

and bm = F(a8bm
80 + a6b2bm

62 + a4b4bm
44 + a2b6bm

26 + b8bm
08)/((κm + 1)a8

0 μ4
m). (4.6)
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Here the vector terms in parentheses in (4.3)–(4.5) have components that are cubics in (μf, μc, μm)
with coefficients which depend on (κf, κc, κm); (4.6) is similar, but with quartics. In (4.3) and (4.6),
a check of the algebra is that we must have

(af
1, af

3, bm
4 ) = (0, 0, 0), (4.7)

because these are among the boundary conditions we started with.
So far, a and b are arbitrary, subject only to a < b. For a thin coat, we use the dimensionless

thickness ε and mean radius a0, for which a = a0(1 − ε/2) and b = a0(1 + ε/2). Then the coefficient
vectors (af, ac, bc, bm) are octics in ε, with expansions of the form

af = F
( 8∑

i=0

af
iε

i
)/

μ3
m, ac = F

( 8∑
i=0

ac
i ε

i
)/

μ3
m (4.8)

and

bc = F
( 8∑

i=0

bc
i ε

i
)/

μ3
m, bm = F

( 8∑
i=0

bm
i εi

)/
((κm + 1)μ4

m). (4.9)

Here a0 has cancelled out, and the vector coefficients of the powers of ε inherit their polynomial
form from (4.3) to (4.6); i.e. cubic in (μf, μc, μm) for (af

i , ac
i , bc

i ), and quartic for bm
i (i = 0, 1, . . . , 8).

The same type of polynomial expansion is obtained if ε is defined by b = a(1 + ε), except that the
coefficients depend differently on (κf, κc, κm).

(a) Evaluation of the forcing parameter F
We now evaluate F for the boundary-value problem of type (b) as specified in §2a, i.e. distant
forcing. This corresponds to a specified value of σ∞ in the relation (σm

rr , σm
rθ ) → (σ∞, σ∞) as r → ∞,

as given in (2.9). On returning to the definitions in §2, it is found that the relation ṽm
b = M̃m

b bm

given after (2.13) yields

(σm
rr , σm

rθ ) → −2bm
2 (μm, μm) (r → ∞). (4.10)

Hence σ∞ and bm
2 are related by

σ∞ = −2μmbm
2 , (4.11)

so that bm
2 must be a constant. But in (4.9) we have an expression for bm in terms of F, and its

second component is

bm
2 = F

( 8∑
i=0

(bm
i )2 εi

)/ (
(κm + 1) μ4

m
)
. (4.12)

Hence substitution of (4.12) into (4.11) gives

F = −σ∞/(2μm)
Dm/(κm + 1)

, (4.13)

where Dm is the denominator polynomial of F, a dimensionless quantity defined by

Dm = Dm(ε) =
∑8

i=0(bm
i )2 εi

μ4
m

. (4.14)

With this value of F, all field values may be determined completely, in a form proportional to the
specified σ∞. The basic structure of field values, in respect of their dependence on ε, is that they
contain denominators that are octics in ε, and numerators in which the maximum power of ε is
usually in the range 6–9, but can be as high as 12. Instead of powers of ε in these expressions, one
may equivalently use powers of a and b, by means of (4.3)–(4.6) instead of (4.8)–(4.9).

For a boundary-value problem of type (c), i.e. localized forcing, the analysis is similar, but
typically involves field values specified in the fibre or coat, rather than the matrix, and leads to a
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different expression for F. As an example, let us suppose that σrr at r = b is a specified constant,
say σrrb. Instead of (4.11) we now invoke the relation

σrrb = −2μm(3bm
1 + bm

2 + 2bm
3 ), (4.15)

and on its right-hand side substitute the values of (bm
1 , bm

2 , bm
3 ) from (4.9). On rearranging, we

obtain an expression for F of the same form as (4.13), but with the numerator containing σrrb
instead of σ∞, and the denominator containing a polynomial Db = Db(ε). This polynomial is the
sum of three expressions similar to that on the right-hand side of (4.14), but now determined by
(bm

1 , bm
2 , bm

3 ) rather than just bm
2 . If σrr were specified at a instead of b, we would obtain a third

expression for F, with denominator polynomial Da = Da(ε). These examples, and others, make
clear how F depends on the boundary-value problem being solved, especially the way in which
different denominators occur, regarded as functions of ε.

If F is unspecified, we have the homogeneous problem (a). Although in principle this covers
all cases, it should be remembered that many choices of F do not correspond to boundary-value
problems which would arise in practice. For example, if F were taken to be independent of ε, then
all distant and localized boundary values would depend on ε in a complicated way, and it is not
easy to imagine what simple set of specified boundary conditions could lead to this.

(b) Non-uniformity in denominators for a stiff coat
Henceforth, we shall concentrate on the distant-forcing problem, and take the forcing parameter
F to be as given by (4.13). Let us examine the coefficients of the denominator polynomial for a stiff
coat, i.e. μc � max(μf, μm). This is β � 1 in the notation of (1.1). Then in each coefficient in Dm,
the highest-degree power of μc dominates the lower powers. On evaluating these coefficients, i.e.
the quantities (bm

i )2 for i = 0, 1, . . . , 8, and picking out the highest powers, we find that the orders
of magnitude of successive terms when β � 1 are in the ratio

(1, βε, βε2, βε3, β2ε4, βε5, βε6, βε7, ε8). (4.16)

Further details of the coefficients of these terms, as functions of (κf, κc, κm), are given in the
illustrative examples in §9.

In (4.16), the power of β increases between the first and second terms, and between the fourth
and fifth terms; hence for an expansion to be uniform with respect to β when β � 1, it is necessary
to keep the first, second and fifth terms, i.e.

(1, βε, β2ε4), (4.17)

because any one of these could be the largest depending on the value of β relative to
(1/ε, 1/ε2, 1/ε3). For example, the term in β2ε4 is largest if β � 1/ε3. The third and fourth terms
in (4.16) are not needed for β � 1 because in these terms the power of β is no higher than in
any preceding term: in progressing from the third to the fourth term, only the power of ε has
increased, and for a thin coat we have ε � 1, by definition. The same argument shows that terms
beyond the fifth are not needed.

Without a theory such as that in the present paper, a numerical approach could be misleading.
For example, if the first four terms were retained, i.e. up to order ε3, it might appear numerically
that convergence has occurred, because the third and fourth terms are so much smaller than the
first two; but in fact, the fifth term can be larger than any of these first four. Conversely, how one
would know when to stop, if it has been found numerically that the fifth term is the largest? The
above analysis provides an important conclusion for practical computation: however large the
value of β, it is not necessary to go beyond the fifth term in approximation of Dm(ε) for β � 1; but
to cover all cases, it is necessary that this fifth term be retained.
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(c) Non-uniformity in denominators for a soft coat
When the coat is soft, i.e. α � 1 in the notation of (1.1), it is the lowest-degree powers of μc that
dominate in the coefficients in Dm, and successive terms have orders of magnitude in the ratio

(α2, αε, ε2, αε3, ε4, αε5, ε6, αε7, α2ε8). (4.18)

Here the powers of α decrease between the first and second terms, and between the second and
third terms. Therefore, when α � 1, it is necessary to keep the first three terms, i.e.

(α2, αε, ε2), (4.19)

but the remaining six terms may be discarded, because they are small compared with at least one of
these first three terms when ε � 1.

(d) Non-uniformity in numerators
We have performed a similar analysis to the above for the numerator polynomials of the coefficient
vectors listed in (4.8)–(4.9) for both α � 1 and β � 1, amounting to an inspection of 32 series
in all. These polynomials are defined by the summations in (4.8)–(4.9), i.e. the right-hand sides
without F. One might have expected a simple pattern to emerge in the powers of α and β which
occur, but none appears to be present. Thus to find out which powers of ε are important in a
coefficient vector, direct calculation along the above lines appears to be called for. In general it is
not necessary to go beyond the first five terms, i.e. beyond terms in ε4; however, for particular
values of material parameters, some coefficients turn out to be zero, and then further terms are
needed. We give examples of this in §9. It seems fair to say that in the series we are studying, the
degree of disorder is severe and unpredictable.

5. Jump in the field values across the coat
Since the state vector u is continuous at interfaces, as represented by the boundary conditions
uf

a = uc
a and uc

b = um
b , we may omit the superscripts and write the interface values as ua and ub, or

in component form

ua = (ura, uθa, σrra, σrθa) and ub = (urb, uθb, σrrb, σrθb). (5.1)

The jump across the coat is [u] = [u]b
a = ub − ua, or equivalently

[u] = ([ur], [uθ ], [σrr], [σrθ ]) = ([ur]b
a, [uθ ]b

a, [σrr]b
a, [σrθ ]b

a). (5.2)

There are various ways to write the dimensionless jump, and we select

[v] = [v]b
a =

(
[ur]

b
,

[uθ ]
b

,
[σrr]
μc

,
[σrθ ]
μc

)
, (5.3)

as being the most convenient for later formulae.
From (4.3) to (4.6) and the functional relations in §2c, the dimensionless interface vectors vf

a
and vm

b and dimensionless jump vector [v] are found to have the form

vf
a = F(a6b2vf

62 + a4b4vf
44 + b8vf

08)/(a8
0 μ3

m), (5.4)

vm
b = F(a8vm

80 + a6b2vm
62 + a4b4vm

44 + a2b6vm
26 + b8vm

08)/(a8
0 μ3

m) (5.5)

and [v] = F(a8[v]80 + a7b[v]71 + · · · + ab7[v]17 + b8[v]08)/(a8
0 μ3

m). (5.6)

On the right-hand sides here, the vector terms in parentheses are cubic in the shear moduli
(μf, μc, μm) with coefficients that depend on (κf, κc, κm).

Some components of the vectors on the right of (5.4)–(5.6) are zero, and hence certain powers
of a and b are absent from components of the corresponding vectors. For example, the last two
components of [v], namely ([σrr]/μc, [σrθ ]/μc), contain only even powers of a and b, and the first
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two components, ([ur]/b, [uθ ]/b), lack a term in a3b5. One aspect of [v] is that it must be zero when
a = b, because of the continuity of the state vector. A check reveals that this is so, and hence that
[v] is divisible by b − a. On removing this factor, we could instead of (5.6) write [v] as proportional
to an expression in

(a7, a6b, . . . , ab6, b7)

a7
0

, (5.7)

but there is no advantage in doing so, and the resulting expressions are longer.
As in §4, the above expressions in a and b may be written as polynomials in the dimensionless

thickness ε. Thus (vf
a, vm

b , [v]) are octics in ε, with expansions of the form

vf
a = F

( 8∑
i=0

vf
aiε

i
)/

μ3
m, vm

b = F
( 8∑

i=0

vm
bi ε

i
)/

μ3
m, [v] = F

( 8∑
i=1

[v]iε
i
)/

μ3
m. (5.8)

Here the vector coefficients in parentheses are cubic in (μf, μc, μm). The expansion of [v] has
no term with i = 0, because [v] = 0 when ε = 0. On converting these dimensionless formulae to
their dimensional counterparts, using the definitions at the start of this section, and examining
components, we find for example that [ur] and [uθ ] include terms up to ε9. Since the stress
components in [v] are made dimensionless by a factor μc, it follows that the coefficients in [σrr]
and [σrθ ] contain terms quartic in (μf, μc, μm) in their numerators. Here we are defining ε so that
a = a0(1 − ε/2) and b = a0(1 + ε/2), from (2.1) to (2.2). If ε is defined by b = a(1 + ε), the results are
similar, except that the coefficients have a different dependence on (κf, κc, κm).

(a) Numerators of the jump across a stiff coat
To determine the jump across the coat, we need the field values

(ura, uθa, σrra, σrθa) and (urb, uθb, σrrb, σrθb), (5.9)

at a and b, respectively, from which the jump

([ur], [uθ ], [σrr], [σrθ ]), (5.10)

is obtained by subtraction. These quantities are proportional to F, and so have the denominator
Dm(ε) defined in (4.14). The numerator polynomials do not involve F, and by the same type of
analysis as in §4b we may determine which powers of ε are needed in them for approximations
to be uniformly valid. On carrying this out for a stiff coat, i.e. β � 1, the result is that for the
numerators of (ura, uθa, σrra, σrθa, urb, uθb) two terms must be kept, with orders of magnitude in
the ratio (1, βε), whereas for each of (σrrb, σrθb) a further term proportional to ε4 is required, and
terms in the ratio (1, βε, β2ε4) must be kept.

For the jump (5.10), the numerators require two terms, but which two depends on the
component: they are in the ratio

(ε, βε4) and (ε, βε2), (5.11)

for the two groups ([ur], [σrr], [σrθ ]) and [uθ ], respectively. Further details of the coefficients of
these terms as functions of (κf, κc, κm) are in the illustrative examples in §9.

The significance of these results is that for an approximation to cover the entire range of β for
β � 1, the above terms are needed, but no others. In particular regimes, for example β ∼ 1/ε, or
β ∼ 1/ε3, individual terms may be neglected, but no term can be neglected for the entire range
β � 1. The irregularity of the retained terms is noteworthy. Once these terms are known, it is
natural to inspect them in search of a pattern which would determine the terms to be retained;
but none is evident.
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(b) Cancellation and promotion
A noteworthy point in determining the jumps from the field values at a and b is that some terms
cancel out exactly. In consequence, a knowledge of the dominant terms in ura and urb, for example,
is not sufficient to determine the dominant terms in [ur], because any or all of these terms in ura

and urb might cancel, and then later terms are ‘promoted’. In general, one may use the term
promotion to refer to the process in which a term which is negligible at one stage of a calculation
becomes dominant at a later stage. To determine when this occurs, there is no escape from accurate
calculation of higher order terms in field values. In general, the coefficients of these terms are
complicated functions of (μf, μc, μm) and (κf, κc, κm), and advance warning is not available about
when two of these coefficients, one for the field at a and one for the field at b, will turn out to be
exactly equal. Thus although the final result, namely the terms to be retained in the jumps, is easy
enough to state as above, the amount of analytical work required to obtain it is considerable.

(c) Numerators of the jump across a soft coat
A soft coat is defined by α � 1. We now find that two terms must be kept in the numerators of

(ura, uθa, σrra, σrθa, σrrb, σrθb), (5.12)

the orders of magnitude being in the ratio (α, ε), whereas three terms must be kept for

(urb, uθb), (5.13)

the orders being in the ratio (α2, αε, ε2). For the jump, two terms are required in the numerators,
as for a stiff coat; for ([ur], [uθ ], [σrθ ]) the orders of these terms are in the ratio (αε, ε2), whereas for
[σrr] the orders are in the ratio (αε, ε4). Our earlier remarks about the irregularity of these terms,
and the importance of accounting for cancellation and promotion, apply here just as for a stiff
coat.

(d) Disorder in cross-coat Taylor series
Our approach above has been to analyse numerators and denominators separately, giving
approximations by means of rational functions of ε. An alternative is to calculate Taylor series
approximations, which requires division by Dm. Now we saw in (4.17) and (4.19) that for problem
(b), distant forcing, the dominant terms in Dm are in the ratio (1, βε, β2ε4) for a stiff coat, and in
the ratio (α2, αε, ε4) for a soft coat. Hence on dividing by Dm, and expanding in powers of ε by
means of the binomial theorem, the resulting series are disordered or divergent whenever β � 1/ε

or α � ε. Moreover, the terms in the series may decrease only slowly (and therefore be of limited
use) under the much less restrictive conditions β ≥ O(1/ε) or α ≤ O(ε). Thus the conditions for the
series to be useful may be quite onerous, for example when ε ∼ 1/10.

We have seen that for the fully specified distant-forcing boundary-value problem, it is
necessary to divide all field quantities by Dm. Hence these onerous conditions cannot be evaded
when the Taylor series is constructed. On the other hand, for the homogeneous problem, in
which F is regarded as ‘arbitrary constant’, it is natural not to expand F, and then the series
expansions are of the numerators only, which are polynomials. Questions of convergence do not
then arise. However, such expansions raise difficulties of interpretation, particularly in relation to
the question ‘What is being held constant when ε is varied?’. It seems safer always to consider a
fully specified boundary-value problem, in which case the functional form of F is retained and a
denominator that is a function of ε is always present.
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(e) Normalized cross-coat jumps
Let us define normalized jumps by(

[ur]
urb

,
[uθ ]
uθb

,
[σrr]
σrrb

,
[σrθ ]
σrθb

)
. (5.14)

These do not depend on F, because it cancels out, and in particular they do not depend on which
of the boundary-value problems (a), (b) or (c) is being solved. Their orders of magnitude, in a
compact notation, are

(
[ur]
urb

,
[uθ ]
uθb

,
[σrr]
σrrb

,
[σrθ ]
σrθb

)
∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

ε + βε4

1 + βε
,

ε + βε2

1 + βε
,

βε + β2ε4

1 + βε + β2ε4 ,
βε + β2ε4

1 + βε + β2ε4

)
(β � 1)(

αε + ε2

α2 + αε + ε2 ,
αε + ε2

α2 + αε + ε2 ,
αε + ε4

α + ε
,

αε + ε2

α + ε

)
(α � 1)

(5.15)

for a stiff coat and soft coat, respectively. All order-one coefficients have been replaced here
by 1, so that, for example, the first displayed term on the right indicates that [ur]/urb may be
approximated for β � 1 by the ratio of the sum of two terms of orders (ε, βε4) to the sum
of two terms of orders (1, βε). The exact coefficients are functions of (κf, κc, κm). Alternative
normalizations, variants of (5.14), can be based on field values at a, or the mean of the field values
at a and b, giving results of the same type as (5.15).

The expressions in (5.15) simplify if α or β are scaled with appropriate powers of ε, because
individual terms in a numerator or denominator can then be ignored. For example, consider the
relation

[σrr]
σrrb

∼ αε + ε4

α + ε
, (5.16)

for a soft coat. Here the significant regimes, obtained by balancing orders of magnitude, are α ∼ ε3

and α ∼ ε. Since ε3 � ε, we can use the fact that if α � ε3 then α � ε, and likewise if α � ε then
α � ε3. Hence five different regimes may be identified, defined by the relations

α � ε3, α ∼ ε3, ε3 � α � ε, α ∼ ε, α � ε, (5.17)

and correspondingly the dimensionless jump, written in our compact notation, takes the five
different forms

ε3, α + ε3, α,
αε

α + ε
, ε. (5.18)

Here again, order-one factors have been replaced by 1, to emphasize functional forms without
extraneous detail. The same type of scaling analysis can be applied to all the terms on the right of
(5.15), giving a large number of identifiable regimes.

Because F cancels out in the normalized jumps, the following phenomenon may occur, which
could be very trying numerically in certain parameter regimes: individual field values and jumps,
such as (ura, urb) and [ur], may have badly disordered or even divergent series expansions in ε,
but the normalized jump [ur]/urb (or any alternative form such as [ur]/ura) may nevertheless be
well-ordered and convergent. This will happen when the disorder arises from F rather than from
the field values and jumps without this factor, i.e. the numerators. It is another example of the
great variability of the types of series that can be encountered.

6. Analytic continuation to the coat mid-surface
In deriving effective boundary conditions for an interface, it is often convenient to replace the
original interface, of non-zero thickness, by a surface of zero thickness and determine the jumps
across this surface. To do this accurately, it is necessary to extend the field values by analytic
continuation from outside the interface of non-zero thickness to a hypothetical surface inside the
interface. We now carry this out by extending the field in the fibre and matrix to the mid-surface
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of the coat, defined as a cylinder of radius a0 = (a + b)/2. Recall our definition in (2.1) that the
dimensionless thickness of the coat is ε = (b − a)/a0, so that a = a0(1 − ε/2) and b = a0(1 + ε/2).
Therefore, the field values in the fibre are to be extended from their original domain r ≤ a up
to r ≤ a0, and the values in the matrix from r ≥ b down to r ≥ a0. This gives effective values of
fibre and matrix quantities at the mid-surface, from which the jumps in field values across it are
obtained by subtraction. These will be compared with the jumps calculated in §6, which are across
the entire thickness of the coat.

The analytic continuation is immediate, since all quantities are polynomials or rational
functions of r, and so we may use the formulae derived already, but evaluate them at arbitrary r.
The notation we shall use is that a subscript 0 denotes evaluation at the mid-surface, so that the
analytically continued field values on its two sides are uf

0 and um
0 , or in component form

(uf
r0, uf

θ0, σ f
rr0, σ f

rθ0) and (um
r0, um

θ0, σm
rr0, σm

rθ0). (6.1)

The jump across the mid-surface is [u0] = [u0]m
f = um

0 − uf
0, or equivalently

[u0] = ([ur0], [uθ0], [σrr0], [σrθ0]). (6.2)

As in §5, these quantities are proportional to F, and so have the denominator Dm(ε). From the
part multiplying F, we obtain the numerator polynomials, and our aim is to calculate their series
expansions in ε, keeping only those terms needed for approximations to be uniformly valid for
an arbitrarily stiff or soft coat. As the method is similar to that of §5, we simply give the main
results, indicating where these differ from the cross-coat jumps.

(a) Numerators of the mid-surface jump for a stiff coat
For a stiff coat, we have β � 1. When the numerators of the eight components listed in (6.1) are
expanded in powers of ε, it is found that they fall into three groups. The first group consists of the
four components of uf

0, each requiring two terms in the ε-series of the numerator to be kept, these
being in the ratio (1, βε). The second group consists of the two displacement components um

r0 and
um

θ0, each requiring three terms in the numerator, in the ratio

(1, βε, β2ε5). (6.3)

The third group consists of the stress components σm
rr0 and σm

rθ0, which also require three terms in
the ε-series of the numerators, but in the different ratio

(1, βε, β2ε4). (6.4)

Turning now to the jump components (6.2), we find that they fall into two groups, the
displacement jumps ([ur0], [uθ0]) and stress jumps ([σrr0], [σrθ0]), requiring numerator terms with
ratios

(ε, βε2, β2ε5) and (ε, βε4), (6.5)

respectively. In (6.3) and (6.5), the occurrence of terms proportional to ε5 is surprising, being
without counterpart in the cross-coat series. These terms are needed if the mid-surface series for
a stiff coat are to be uniformly valid for arbitrarily large β. We discuss this further in §8, under the
heading of possible anomalies introduced by analytic continuation, and give an example in §9.
Just as for the cross-coat series, there is no obvious pattern in the mid-surface series found here.

(b) Numerators of the mid-surface jump for a soft coat
For a soft coat, α � 1, the three groups of components are the same as in (a) above. In the first
group, namely the four components of uf

0, each component requires two terms in the ε-series of
the numerator, in the ratio (α, ε). The other two groups each require three terms, but these differ
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between the two groups: the displacement components um
r0 and um

θ0 require numerator terms in
the ratio

(α2, αε, ε2), (6.6)

whereas for the stress components σm
rr0 and σm

rθ0 the numerator terms are in the ratio

(α2, αε, ε3). (6.7)

The displacement jumps [ur0] and [uθ0] require only two terms in their numerators, namely

(αε, ε2), (6.8)

whereas the stress jumps [σrr0] and [σrθ0] require

(α2ε, αε2, ε3). (6.9)

The terms in ε3 in (6.7) and (6.9) are surprising, and are discussed in §8.

(c) Disorder in mid-surface Taylor series
If the Taylor series of the mid-surface jumps are required, they are found by the method of §5d,
involving division by Dm(ε). The details are as before, because Dm(ε) is the same in each case.
As previously, the conditions for the resulting series to be well-ordered can be quite onerous.

(d) Normalized mid-surface jumps
In the same notation as §5e, the normalized jumps at the mid-surface, for a stiff coat and soft coat,
are (

[ur0]
um

r0
,

[uθ0]
um

θ0
,

[σrr0]
σm

rr0
,

[σrθ0]
σm

rθ0

)

∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

ε + βε2 + β2ε5

1 + βε + β2ε5 ,
ε + βε2 + β2ε5

1 + βε + β2ε5 ,
βε + β2ε4

1 + βε + β2ε4 ,
βε + β2ε4

1 + βε + β2ε4

)
(β � 1)(

αε + ε2

α2 + αε + ε2 ,
αε + ε2

α2 + αε + ε2 ,
α2ε + αε2 + ε3

α2 + αε + ε3 ,
α2ε + αε2 + ε3

α2 + αε + ε3

)
(α � 1).

(6.10)

The symbol ∼ indicates that order-one multiplying factors on the right-hand side have been
replaced by 1. Individual regimes can be identified by scaling α or β with appropriate powers
of ε; each scaling gives a reduced form. Since several regimes exist for each jump on the right of
(6.10), the number of reduced forms is large. As in §5e, a factor F is not present in normalized
jumps, even when it is present earlier. Hence normalized jumps may be well-ordered despite the
fact that field values and jumps are disordered.

7. Analytic continuation to arbitrary radius in the coat
Let us now extend the field in the fibre and matrix not just to a cylinder of radius a0 = (a + b)/2 as
above, but to a cylinder of arbitrary radius dividing the interval [a, b] in the ratio k : 1 − k, where
0 ≤ k ≤ 1. This radius is

a(k)
0 = (1 − k)a + kb, (7.1)

or equivalently

a(k)
0 = a0

(
1 +

(
k − 1

2

)
ε
)

, (7.2)

since a = a0(1 − ε/2) and b = a0(1 + ε/2). Thus our previous results are for k = 1/2, with a(1/2)
0 = a0.

Although the effect of placing an interface at an arbitrary radius within the coat has been analysed
previously (see the review article [19] and citations therein for a variety of approaches), we have
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not found an approach similar to ours in the literature, and the following analysis and results
appear to be new.

The question of interest is whether different sets of dominant terms could arise through the
dependence of coefficients on k; this would happen if previously non-zero coefficients for k =
1/2 become zero when k �= 1/2, or conversely if new terms with non-zero coefficients arise. The
functional dependence of all coefficients on k is readily calculated, and it shows that the formulae
just given still apply for any fixed value of k in the range 0 ≤ k < 1, but not for the case k = 1
(dealt with separately below). For example, consider the value k = 0, corresponding to analytical
continuation of the field in the matrix down to r = a. Few coefficients are then zero, and none
of these is in a dominant term; hence no change arises in the terms to be included or excluded in
series expansions in ε, though of course the numerical values of the coefficients are different. Note
that placing the hypothetical surface at r = a, and extending the field in the matrix down to this
interface with the fibre, is different from solving a three-phase problem with a coat of vanishingly
small thickness at r = a: in this latter case, the field is continuous at r = a , but in the former case,
there is a jump between the field values on the two sides of r = a.

Matters are different for k = 1, i.e. analytic continuation up to r = b from the fibre. Explicit
formulae, in the form of functions of k, reveal that many coefficients contain k − 1 as a factor,
and so vanish when k = 1. For example, in §6a we saw that for a stiff coat, the numerators of the
mid-coat jumps [ur0] and [uθ0] require terms in the ratio (ε, βε2, β2ε5). However, the coefficient of
β2ε5 contains k − 1 as a factor, so that the term is absent when k = 1. In this case, it is necessary to
inspect later terms in the series, for example terms of order

β2ε6, β2ε7, . . . , (7.3)

as they could be promoted; that is, although they are negligible compared with the term of order
β2ε5 when k �= 1, one of them could become dominant when k = 1. On inspecting these later terms,
we find that every term of order β2εn for n ≥ 5 has a factor k − 1 in its coefficient. In conjunction
with the fact that there are no terms of order βmεn for m > 2, this implies that the numerators of
the mid-coat jumps [ur0] and [uθ0] each require only two terms, in the ratio

(ε, βε2). (7.4)

The same phenomenon occurs in the numerators of the field values um
r0 and um

θ0, where the terms
needed are now only

(1, βε). (7.5)

For the other field values and jumps for a stiff coat, the required dominant terms for k = 1 are the
same as for k < 1.

Turning now to a soft coat, we find that in the jumps [σrr0] and [σrθ0] the coefficients of (αε2, ε3)
in the numerator each contain a factor k − 1, but a later term of order αε4 does not, and hence the
terms to be retained when k = 1 are in the ratio

(α2ε, αε4). (7.6)

Here we use the fact that although the coefficients contain a term of order αε3, nevertheless this
term contains a factor k − 1; without this factor, the term αε3 would be retained in preference to
αε4, since αε3 � αε4 when ε � 1. Similarly the numerators of the field values σm

rr0 and σm
rθ0 require

terms in the ratio

(α2, αε), (7.7)

when k = 1; this requires the fact that every term of order εn for n ≥ 3 has a factor k − 1 in its
coefficient, as otherwise another term would be needed. There is no term of order ε or ε2 for any
k. For other field values and jumps for a soft coat, the dominant terms for k = 1 are as for k < 1. It
will be appreciated that the type of inference we are making in this and the previous paragraph
requires careful attention to logic.
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8. Anomalous terms introduced by analytic continuation
To explain the behaviour of the series in §8 when the parameter k is varied, a suitable starting-
point is an examination of all the series presented in this paper so far. Such an examination reveals
that a small number of terms appear to be anomalous, in that they do not fit the pattern of the
results taken as a whole. These are the cross-surface terms in β2ε5 for a stiff coat and the cross-
surface terms in ε3 for a soft coat, present when k < 1. The question, therefore, arises as to whether
they are artefacts introduced by analytic continuation.

A check reveals that such terms are produced by continuation from the matrix phase in the
direction of decreasing r, but not by continuation in the opposite direction, i.e. from the fibre
phase while increasing r. Let us, therefore, make the hypothesis that the cause of the anomalous
terms is analytic continuation in the direction of decreasing r.

This hypothesis is tentative, but it fits the facts. In particular, it explains two features of our
results. First, it is consistent with the observation that there are no anomalous terms in the cross-
layer jumps: these jumps do not involve analytic continuation at all. Second, it explains why there
are no anomalous terms in the cross-surface jumps for k = 1: these jumps involve only analytic
continuation in the direction of increasing r, because when k = 1 we have a(k)

0 = b. For k < 1 there
is analytic continuation in the direction of decreasing r, from r = b down to the lesser value r =
(1 − k)a + kb.

Moreover, the explanation is robust in the following sense. One might argue that for the surface
jumps as a function of k, the small parameter ε = (b − a)/a0 is artificial, and a more natural choice
would be

ε(k) = b − a

a(k)
0

, (8.1)

based on the actual position of the surface at a(k)
0 rather than the mid-coat position a0. Therefore,

we repeated the calculations to obtain all quantities as series expansions in ε(k) instead of ε. The
coefficients in the resulting series become different functions of k from those obtained before; but
in every case the presence or absence of a factor k − 1 in a coefficient is unaltered, even when
the dominant terms to be retained in an expansion depend on this factor being present in a large
number of terms. Thus the order-of-magnitude behaviour of the series expansions presented in
the paper does not depend on the particular form of the small parameter used to represent the
thickness of the coat.

The field in the fibre contains only positive powers of r (because it must be finite and
continuous at the origin), whereas the field in the matrix includes negative powers of r. Perhaps
this explains why analytic continuation outwards from the fibre to larger r does not produce
anomalous terms, but continuation inwards from the matrix does produce them. In advance
of further investigation this is speculative; however, the occurrence of anomalous terms which can
be dominant in certain parameter regimes for a stiff or soft coat after analytic continuation is definitely
established by our results, and our demonstration of their existence appears to be a new result.

9. Illustrative examples
To illustrate the above theory, we present detailed formulae for the jump in the radial
displacement for a stiff coat, i.e. β � 1. We do this for both the mid-surface jump and the cross-
coat jump, and by selecting particular numerical values for shear moduli and Poisson’s ratios, we
give examples of promotion of terms, as described in §5b. One example included in this scheme is
that of incompressible media, for which the Kolosov constants all take the value 1, and we show
that in this case the radial jump is of a smaller order of magnitude than for other values; this is in
accord with physical intuition, and is another confirmation of the theory. For definiteness we take
μf = μm. Recall that F is defined by (3.6), and (n(1), n(3), n(4)) by (4.1)–(4.2).
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(a) Mid-surface jump in radial displacement
We saw in (6.5) that for a stiff coat, the mid-surface jump [ur0] requires, in general, three terms for
a uniform approximation to its numerator, in the ratio (ε, βε2, β2ε5). In more detail, this jump is

[ur0] = Fa0 β2

κm + 1

{−2(κf + 1)(κ2
c − 1)(κm + 1)ε − 4(2κfκm + κf − κm − 2)(κc + 1)βε2

−16κf(κm − 1)β2ε5 + O(ε/β, ε2, βε3, β2ε6, . . .)
}
. (9.1)

For example, when (κf, κc, κm) = (1, 2, 2), we obtain

[ur0] � Fa0 β2
(

−12ε − 4βε2 − 16
3

β2ε5
)

. (9.2)

However, it may happen that some or all of the displayed coefficients are zero. For example,
suppose that all three media are incompressible, i.e. (κf, κc, κm) = (1, 1, 1), corresponding to the
Poisson’s ratios (νf, νc, νm) all taking the value 1/2. In this special case, all three displayed
coefficients in (9.1) are zero, which means that a number of previously neglected terms
must now be promoted. This requires inspection of the coefficients of the terms indicated by
O(ε/β, ε2, βε3, . . .) in (9.1). We find that the dominant terms then arise from the expression

[ur0] = Fa0 β2

κm + 1

{−(11κfκm − 28κf − 4κm + 5)(κc + 1)βε3 + 4κf(5 − κm)β2ε6

+ O(ε3, βε4, β2ε7, . . .)
}
, (9.3)

evaluated at (κf, κc, κm) = (1, 1, 1), which gives

[ur0] � Fa0 β2(16βε3 + 8β2ε6). (9.4)

Thus in the incompressible case, the expansion begins with a term in ε3 rather than merely ε.
If the three media have identical parameters, then in effect there is only one medium, and all

mid-surface jumps must be zero when calculated without approximation. We have checked that
all our general formulae satisfy this condition when μf = μc = μm and κf = κc = κm. As a simple
illustration, the full series for which (9.4) is a uniform approximation is

[ur0] = Fa0
{
(16β3 − 28β2 + 12β)ε3 + (8β3 + 16β2 − 40β + 16)ε4

+ (19β3 − 10β2 − 9β)ε5 + (8β4 − 2β3 + 2β − 8)ε6 + · · · }. (9.5)

A value β = 1 here corresponds to μf = μc = μm (recall that we are taking μf = μm), and then the
coefficients in (9.5), as well as those not displayed, become zero, giving [ur0] = 0, as expected.
Similarly, we also obtain [uθ0] = 0, [σrr0] = 0 and [σrθ0] = 0 in this case.

In the above expressions, the forcing term F contains the denominator Dm, defined in (4.14). We
saw in (4.17) that Dm requires three terms for its uniform approximation, in the ratio (1, βε, β2ε4).
In more detail, we have

Dm = β2{−(κf + 1)(κc + 1)2(κm + 1) − 2(4κfκm + 3κf + κm)(κc + 1)βε

− 16κfκmβ2ε4 + O(ε, βε2, βε3, . . .)
}
. (9.6)

Here the displayed coefficients cannot be zero, and so promotion of later terms does not take place
for any parameter values. However, some of the neglected terms can be identically zero, rather
than merely smaller in order of magnitude than the retained terms. For example, the O(ε) term
has coefficient

− 2(2κfκm + κf − κm − 2)(κ2
c − 1), (9.7)

and the O(βε2) term has coefficient

− 6(2κfκm − κf − κm)(κc + 1), (9.8)

and these can be zero for a variety of values of (κf, κc, κm).
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(b) Cross-coat jump in radial displacement
As noted in §5a, the cross-coat jump [ur] for β � 1 requires two terms for uniform approximation
to its numerator, in the ratio (ε, βε4). In more detail,

[ur] = Fa0 β2{(κf + 1)(κc + 1)(3 − κc)ε − 2κf(3κc − 5)βε4 + O(ε/β, ε2, βε5, . . .)
}
. (9.9)

When (κf, κc, κm) = (1, 2, 2), this gives

[ur] � Fa0 β2(6ε − 2βε4). (9.10)

The coefficient of βε4 in (9.9) is zero when κf = 5/3, i.e. νc = 1/3, and in this case the term of order
βε5 within parentheses is promoted. Its coefficient is 8κf. When (κf, κc, κm) = (1, 5/3, 2), this gives

[ur] = 8
9

Fa0 β2
{

8ε + 9βε5 + O
(

ε

β
, ε2, βε6, . . .

)}
. (9.11)

In these expressions, the denominator Dm in F is the same as for the mid-surface jump, i.e. is given
by (9.6).

10. Conclusion
The problem addressed in this paper, namely that of determining the elastic displacements and
stresses in a three-phase circular cylindrical configuration subject to biaxial forcing, is classical
and appears to be simple. But in fact, we have found great complexity in its solution as soon as
one proceeds to take the limit of a thin coating, ε � 1, while taking account of other parameters
in the problem. The underlying physical reason for this is that a coating supports bending
deformation as well as dilatation and shear, and the relative importance of the different types
of deformation introduces different scaling regimes. This was the point of view adopted in [11],
in which asymptotic regimes were identified at the outset, and used to construct the leading terms
in series expansions. Our work may be regarded as an extension and confirmation of that work,
in which we do not posit regimes but proceed deductively from the full equations. This is achieved by
starting with the exact solution of boundary-value problems formulated and solved within linear
elasticity theory, and calculating their series expansions in ε. The detailed results in [11] for our
case (a), the homogeneous problem, and in [16,17] for our case (b), the distant-forcing problem,
have proved invaluable, because they give explicit expressions for many coefficients. We have
compared these with our results, and found agreement in all cases. This provides a powerful
check, since the methods used are so different.

Our work provides underpinning theory for assessing the likely accuracy of different types
of effective boundary conditions for a thin coating in the high-contrast limit. For the three-
phase configuration investigated, we have pinpointed which of the terms in the various series
expansions must be kept in any given parameter regime of shear moduli and coat thickness,
and which terms may be discarded without introducing significant error. Importantly, we have
shown that the forcing parameter F must be calculated explicitly as a function of the coat thickness
ε in any particular boundary-value problem, since the form of its Taylor series expansion in ε

provides the most onerous restrictions on the range of validity of any proposed approximation.
In effect, F provides the denominator of the solution of the problem, indicated in our notation
by such functions as Dm(ε), Da(ε) and Db(ε), and as commonly occurs in mathematical physics,
the denominator is the crucial function for determining analytic structure and convergence
behaviour.

We have identified parameter regimes in which terms up to high order must be kept. Our
results give new jump conditions that relate to rational function representations in ε, and these
can be used to find uniform approximations to the three-phase problem from consideration of
a two-phase problem. No doubt in more complicated examples than analysed here, the details
and scalings encountered will be different, but our results give an indication of what might
be expected in general. Especially, they suggest that irregular and unpredictable disorder in the
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magnitude of early and middle terms of series expansions in the thickness may be the usual behaviour
rather than the exception, and to understand this disorder it is essential to consider a fully specified
boundary-value problem.
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